通讯:13983250545
微信:ycsh638
QQ:469764481邮箱:ycsh6318@163.com
在“分子“尺度上去理解神奇的“水分子“
一、水分子的结构特征
众所周知,水是由氢氧两种元素组成,两个氢原子一个氧原子形成V字型结构。常温常压下,气态自由水分子氢氧键的键长为0.9527×10^-10米,两个氢氧键之间的夹角为104.52°。
水的键长和键角并不是一个固定的值,会随着成键状况、温度、压强等因素在较大的范围内变化。由于其V型的分子结构,使得水分子显得非常灵活。
二、水分子V型结构的成因
水分子的这种V型结构是由于sp电子杂化造成的。一个氧原子最外层有2个2s电子和4个2p电子,而一个氢原子只有1个1s电子,为了组成8个电子的满壳层结构,一个氧原子需要与两个氢原子通过核外电子sp杂化轨道结合,形成2个氢氧键。
余下的两对未成键的电子称为孤电子对,它们在水分子与外界发生相互作用时起到决定性的作用。所以一个水分子周围的电子分布是一个近似四面体结构,对应于sp3电子杂化。
说水分子是近似四面体的原因是由于氢氧键与孤对电子的局域化中心长度不一样,分别为0.52×10^-10m和0.3×10^-10m。另外氢氧键之间的夹角104.52°与孤对电子轨道夹角114°都偏离了理想四面体中的夹角109.5°。

三、水分子的极性
在好人在介绍水分子的极性的时候,都是简单介绍了由于氢氧键产生的极性,其实这样的介绍是很粗糙的。水分子的极性不仅是由于氢原子失去电子带正电,同时也由于孤对电子区域聚集了多余的负电荷。水分子的整体电极矩是从氧端沿着两个氢氧键之间夹角的平分线穿到氢端。
单个水分子的电极矩为1.855D,而一氧化氮的电极矩只有0.1D。水分子这种很大的极性使得水非常容易参与和其它极性分子或者离子的相互作用,这意味着,很多化学反应可以在水溶液中发生。

四、水分子的运动
由于水分子这种3个原子组成的V型结构,所以水分子有9个自由度:3个平动自由度,3个转动自由度,还有3个振动自由度。前两者与外界环境有关,后者是水分子内部自由度,但如果受到环境的影响则会发生频移。
这3个振动自由度为:氢氧键对称拉伸、氢氧键不对称拉伸和氢氧氢的剪切或弯曲运动。其振动频率分别为3657/cm、3756/cm、1595/cm,其中cm^-1是用波数做单位。
在能量空间中,水分子的电子轨道有5个能级:1a1、2a1、1b2、3a1、1b1,其中1b2为成键能级,1b1为孤对电子,2a1、3a1为成键和未成键轨道的混合。
如果在强成键轨道1b2上失去一个电子,则会导致水分子分解为氢离子和氢氧根离子;3a1轨道是保持水分子V型结构的关键,如果这个轨道上失去一个电子,则水分子会变成类似二氧化碳那样的棒状结构。

五、水分子之间的氢键作用
氢键并不是水分子独有的,而是指氢与负电性很强的原子,比如氢与氧、硫、氮以共价键结合的时候,原子之间相互吸引产生的作用。虽然氢键的主要来源是由于库仑力,但同时也有一小部分是来自诱导极化作用和分子间的色散力。
我们通常意义上说的水分子之间的相互作用就是指氢键的作用。它是由水分子中的氢与相邻的水分子中氧的孤对电子相互吸引形成的。两个水分子结合成二聚体的时候,OH—O键长约为2.976×10^-10m,键角接近180°。

由于一个水分子只有两个孤对电子,所以它最多可以同时接受两个氢形成氢键,加上其自身拥有的两个氢形成氢键,所以一个水分子最多可以形成4个氢键,组成空间四面体结构。
不论水以液态还是固态(冰)存在,这种四面体网络结构都是其基本特征。

六、来自氢键的神奇特性
氢键的强度很高,大约为23千焦每摩尔。这导致水的熔点、沸点极高,热容量极大。如果没有氢键,则相对分子量为18的水在零下75摄氏度就会汽化。
同样,水结冰膨胀也是由于氢键造成的。这是因为我们前面说过的,一个水分子最多能组成4个氢键,其具有方向性和饱和性,这使得水在结冰过程中,为了保持最强的氢键作用(能量最低状态),水分子必须形成四面体网格结构,每个水分子都会占据一定的体积。
当温度升高,冰开始融化时,水分子这种位置约束减少,反而使得液态水可以拥有更小的体积。正是因为这个原因,当我们用压力压在冰面上时,冰可以开始液化。

声明:本站属公益性没有商业目的的网站,上列文章仅供个人学习参考。本站所发布文章为原创的均标注作者或来源,未经授权不得转载,许可转载的请注明出处。本站所载文章除原创外均来源于网络,如有未注明出处或标注错误或侵犯了您的合法权益,请及时联系我们!
欢迎关注本站(可搜索)"养鱼第一线"微信公众帐号和微信视频号"养鱼第一线刘文俊视频号"以及头条号"水花鱼@渔人刘文俊"!